At a time of persistent unemployment, especially among the less skilled, many wonder whether our schools are adequately preparing students for the 21st-century global economy. Despite high unemployment rates, firms are experiencing shortages of educated workers, outsourcing professional-level work to workers abroad, and competing for the limited number of employment visas set aside for highly skilled immigrants. As President Barack Obama said in his 2011 State of the Union address, “We know what it takes to compete for the jobs and industries of our time. We need to out-innovate, out-educate, and out-build the rest of the world.”
The challenge is particularly great in math, science, and engineering. According to Internet entrepreneur Vinton Cerf, “America simply is not producing enough of our own innovators, and the cause is twofold—a deteriorating K–12 education system and a national culture that does not emphasize the importance of education and the value of engineering and science.” To address the issue, the Science, Technology, Engineering, and Math (STEM) Education Coalition was formed in 2006 to “raise awareness in Congress, the Administration, and other organizations about the critical role that STEM education plays in enabling the U.S. to remain the economic and technological leader of the global marketplace.” Tales of shortages of educated talent appear regularly in the media. According to a CBS News report, 22 percent of American businesses say they are ready to hire if they can find people with the right skills. As one factory owner put it, “It’s hard to fill these jobs because they require people who are good at math, good with their hands, and willing to work on a factory floor.” According to a Bureau of Labor Statistics report, of the 30 occupations projected to grow the most rapidly over the next decade, nearly half are professional jobs that require at least a college degree. On the basis of these projections, McKinsey’s Global Institute estimates that over the next few years there will be a gap of nearly 2 million workers with the necessary analytical and technical skills.
In this paper we view the proficiency of U.S. students from a global perspective. Although we provide information on performances in both reading and mathematics, our emphasis is on student proficiency in mathematics, the subject many feel to be of greatest concern.